Index sets of decidably categorical and computably categorical structures

Margarita Marchuk

Sobolev Institute of Mathematics

ABSTRACT

Let K be a class of structures, closed under isomorphism. A computable characterization for K should separate the computable members of K from other structures, where these are either not in K, nor computable. Goncharov and Knight [?] introduced three different approaches to computable characterization for classes of structures. One of these approaches is based on the notion of an index set.

Suppose that K is a class of computable structures of a signature σ. Suppose also that K is closed under isomorphism. The index set of the class K is the set

$$I(K) = \{ e \in \omega : \exists \mathfrak{M} \in K (\varphi_e = \chi_{D(\mathfrak{M})}) \},$$

where $\chi_{D(\mathfrak{M})}$ is the characteristic function of the atomic diagram of \mathfrak{M}.

A computable structure \mathfrak{M} is computably d-categorical if for every computable copy \mathfrak{N} of \mathfrak{M}, there exists a d-computable isomorphism. A decidable structure \mathfrak{M} is decidably d-categorical if for every decidable copy \mathfrak{N} of \mathfrak{M}, there exists a d-computable isomorphism.

We will talk about the complexity of index sets of decidably categorical and computably categorical structures.

References